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Supplementary Methods

Implementation of RNAprob-3

Before giving implementation details, it is worth noting that each helix has two ends - one inter-

nal (type-1 helix-end) and the other external (type-2 helix-end) (Fig. S1). It is straightforward to

verify that i-j is a type-1 pair when it closes a hairpin/bulge/internal/multi-branch loop.

In RNAstructure [1, 2], an N ×N array V is used, where V (i, j) is used to represent the MFE of

all admissible structures in the subsequence from i to j (denoted by Sij), given that i pairs with

Figure S1: Schematic illustration of type-1 (red line) and type-2 helix-end (blue line).
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j. Specifically, V (i, j) is the minimum of the following four terms:

V (i, j) = min{V H(i, j), V I(i, j), V M(i, j), V S(i, j)},

where V H(i, j) is the NNTM free energy of a hairpin loop closed by i-j, V I(i, j) (respectively,

VM(i, j)) is the MFE over all admissible structures for Sij on the premise that i-j closes a bulge/internal

(respectively, multi-branch) loop, and V S(i, j) is the MFE over all admissible structures for Sij

satisfying the condition that i-j is stacked on (i + 1)-(j − 1). In addition, two other N × N ar-

rays, W and WM , and three 1 × N arrays, i.e. W3, W5 and Wca, are used in the recursion of

the dynamic programming algorithm [2].

To implement RNAprob-3, we introduce a new array V1 of size N ×N , such that

V1(i, j) = min{V H(i, j), V I(i, j), V M(i, j)}+ ∆G′i|helix−end + ∆G′j |helix−end +
∑
i<k<j

∆G′k|unpaired.

Additionally, we introduce an array V2 of size N ×N , such that

V2(i, j) = V S(i, j) + ∆G′i|helix−end + ∆G′j |helix−end.

Intuitively, V1(i, j) accounts for all cases where i-j is a type-1 helix-end. In such cases, we are

certain about the structural context of i-j. On the other hand, V2(i, j) accounts for type-2 helix-

ends, whose context might change during future sequence extension; in other words, they may

become stacked within folds of longer sequences. With V1 and V2, we can simply set V (i, j) =

min{V1(i, j), V2(i, j)}, which reflects a temporary assumption that i-j is helix-end. Later on,

we explicitly check if it is helix-end. The computations of W (i, j), WM(i, j), W3(i), W5(i) and

Wca(i) follow from [2], except that ∆G′k|unpaired is added for each unpaired base k (i < k < j).

We next detail how to calculate V2(i, j).

In RNAstructure, V S(i, j) is recursively computed as follows:

V S(i, j) = V (i+ 1, j − 1) + ∆Gstack(closed by i-j and (i+ 1)-(j − 1)).
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Figure S2: Illustration of Case 1.

Therefore, for RNAprob-3, we have the following general recursion relationship:

V2(i, j) = V (i+1, j−1)+∆Gstack(closed by i-j and (i+1)-(j−1)) +∆G′i|helix−end+∆G′j |helix−end.

Note that pseudo-energy terms for (i + 1) and (j − 1) are no longer included (in contrast to

RNAlin’s implementation), as they were accounted for under V (i + 1, j − 1). At this point, when

i-j forms, we look back to (i + 1)-(j − 1), to check whether it is helix end or stacked. In essence,

we look back to the states of i + 2 and j − 2. If (i + 1)-(j − 1) is stacked, then we need to ad-

just the pseudo-energy terms for i+ 1 and j − 1 (Fig. S3). More formally, to compute V2(i, j), we

distinguish between two cases:

Case 1: (i+1)-(j−1) is a type-1 helix-end, which implies that it closes a hairpin/bulge/internal/

multi-branch loop (Fig. S2). In this case, V (i + 1, j − 1) = V1(i + 1, j − 1). Let A = V1(i + 1, j −

1) + ∆Gstack(closed by i-j and (i+ 1)-(j−1)). To this end, we have V2(i, j) = A+ ∆G′i|helix−end+

∆G′j |helix−end.

Case 2: (i+ 1)-(j− 1) is stacked onto (i+ 2)-(j− 2) (Fig. S3). In this case, V (i+ 1, j− 1) can be

computed as V2(i+1, j−1)+∆(i+1, j−1), where ∆(i+1, j−1) = ∆G′i+1|stacked+∆G′j−1|stacked−

∆G′i+1|helix−end −∆G′j−1|helix−end. The term ∆(i + 1, j − 1) makes sure that the correct pseudo-

energy terms are assigned to i+1 and j−1, given the fact that ∆G′i+1|helix−end+∆G′j−1|helix−end

is applied during the calculation of V2(i+1, j−1), while ∆G′i+1|stacked+∆G′j−1|stacked is expected.
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Figure S3: Illustration of Case 2.

Similar to Case 1, let B = V2(i+ 1, j − 1) + ∆(i+ 1, j − 1) + ∆Gstack(closed by i-j and (i+ 1)-(j −

1)), we have V2(i, j) = B + ∆G′i|helix−end + ∆G′j |helix−end. Consequently, we have V2(i, j) =

min{A,B}+ ∆G′i|helix−end + ∆G′j |helix−end.

During suboptimal traceback, the MFE conformation for each base pair i-j is computed as fol-

lows in [2, 3]:

Emin(structure with i-j pair) = V (i, j) + V (j, i+N),

where N is the sequence length. For RNAprob-3, we need to distinguish between two cases, based

on whether i-j is a helix-end or stacked pair in the resulting structure, making sure that correct

pseudo-energy terms are assigned. If i-j is a helix-end pair, we have

Emin(structure with i-j pair) = V (i, j) + V (j, i+N)−∆G′i|helix−end −∆G′j |helix−end.

This formula derives from the fact that the term ∆G′i|helix−end + ∆G′j |helix−end is counted twice,

specifically, in the calculations of V (i, j) and of V (j, i+N), whereas it should be added only once.

For the case where i-j is a stacked pair, we have

Emin(structure with i-j pair) = V (i, j)+V (j, i+N)−2×(∆G′i|helix−end+∆G′j |helix−end)+∆G′i|stacked+∆G′j |stacked.
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Performance measures

Let TP (true positives) be the number of correctly predicted base pairs, FP (false positive) the

number of base pairs in the predicted structure but not in the reference structure, TN (true neg-

ative) the number of base pairs that do not exist in both predicted and reference structures and

FN (false negatives) the number of base pairs in the reference structure but not in the predicted

structure. Then by [4], we have

sensitivity =
TP

TP + FN
(1)

PPV =
TP

TP + FP
(2)

MCC =
TP × TN − FP × FN√

(TP + FP )× (TP + FN)× (TN + FP )× (TN + FN)
(3)

To calculate SLW-average sensitivity, PPV and MCC, we compute the sum of TPs, FPs, TNs

and FNs across all RNAs. These values are then plugged into the above equations.

Simulation from a kernel density estimation

The distribution for each structural context was modeled using Gaussian kernel density esti-

mation, as implemented in the R function density. The bandwidth (h) for the Gaussian kernel

was selected based on the method developed by Sheather & Jones [5] (setting bw=“JS” in den-

sity). Resulting bandwidths amounted to h=0.0367 (unpaired), 0.0159 (helix-end) and 0.0048

(stacked). For each base i, a simulated reactivity, αi, can be generated as follows:

• Randomly sample a value, x, with replacement from the distribution corresponding to its

structural context, πi (based on the reference structure).
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• Sample αi from a normal distribution, N (x, hπi).

KDE decoder

Reactivity (α) distributions were modeled using a Gaussian KDE as described above and with

identical bandwidths. This resulted in the following probability sets for each structural context

(π):

{P (α|π = Helix-end) | − 2.50 ≤ α ≤ 4.86, αn = αn−1 + 0.0144}

{P (α|π = Stacked) | − 2.32 ≤ α ≤ 6.88, αn = αn−1 + 0.0180}

{P (α|π = Unpaired) | − 1.30 ≤ α ≤ 17.12, αn = αn−1 + 0.0361}

Data transformation

SHAPE data may contain negative and zero reactivities that preclude direct log-transformation.

Here, we describe a routine to generate strictly positive SHAPE profiles suitable for such trans-

formation. This routine is implemented in R and uses the package PearsonDS.

1. Find X = {αi|αi < 0} (i.e., the set of negative reactivities) across all RNAs and log-

transform the absolute values of X.

Note: The log-transformation is optional but produces a distribution with less extreme

moments, therefore allowing to fit a more common Pearson distribution.

2. Determine the moments of the distribution obtained in Step 1 (using empMoments) .

In our study, [µ, σ2, skewness, kurtosis] = [-2.77, 1.54, -0.60, 5.18], corresponding to

a Pearson type IV distribution.

3. For each RNA, randomly sample (using rpearson) n data points from a Pearson density

distribution with moments computed in Step 2, where n is the total number of negatives
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and zeros. Take the exponential of these n values (if a log-transform was applied in Step 1)

and finally replace negative and zero reactivities with these new values.

Computing posterior probabilities of structural contexts

Probabilities for each structural context conditioned on SHAPE reactivities were determined us-

ing a Bayesian approach, similar to [6], but extended to accommodate three possible contexts.

The structural context probability of a base given its observed reactivity was computed as:

P (πi|αi) =
P (αi|πi) · P (πi)∑
j P (αi|πj) · P (πj)

.

The calculation requires:

• P (πi): The prior probability of context πi.

• P (αi|πi): Reactivity likelihoods given the structure context πi. Note that here we use a

Gaussian kernel density estimate to smooth reactivity distributions. Reactivity probabil-

ity densities (P (αi|πi)) were determined using the function kde from the R package ks with

a bandwidth set to 0.2.

Mock probe simulations

Let αi be the reactivity to be simulated for base i and πi be the corresponding structural context

(in the reference structure).

Scenario 1: Mock probe reacts identically with helix-end and unpaired bases. More formally,

helix-end reactivities are sampled from the unpaired SHAPE distribution, such that:

P (αi|πi = helix-end) = P (αi|πi = unpaired) ∼ exp(αi;λ = 1.468)

P (αi|πi = stacked) ∼ GEV(αi;µ = 0.040, σ = 0.049, ξ = 0.763),
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where GEV stands for the generalized extreme value distribution and exp is exponential distribu-

tion.

Scenario 2: Here, reactivities are sampled from normal distributions. G/C bases are sampled

from distributions with higher variances compared to A/U bases. In more detail, if xi is the ith

base identity (i.e., xi ∈ {A,C,G,U}), then reactivity αi is simulated as follows:

P (αi|πi = stacked, xi) ∼


N (µ = 0, σ = 0.1), if xi ∈ {A,U}

N (µ = 0, σ = 1), if xi ∈ {G,C}

P (αi|πi = helix-end, xi) ∼


N (µ = 0.25, σ = 0.1), if xi ∈ {A,U}

N (µ = 0.25, σ = 1), if xi ∈ {G,C}

P (αi|πi = unpaired, xi) ∼


N (µ = 0.5, σ = 0.1), if xi ∈ {A,U}

N (µ = 0.5, σ = 1), if xi ∈ {G,C}

Finally, negative reactivities are set to zero. RNAprob can model negative reactivities but in

RNAlin, all negatives are set to 0 before computing pseudo-energies. By setting negatives to

zero, we ensure that RNAprob and RNAlin are compared on identical input information, thus

allowing for a fair comparison.

For each of the two scenarios, we generated 10 replicates. For each replicate, we optimized the

parameters for RNAlin and re-generated the distribution for RNAprob on a training set of RNAs,

and then compared their performances on the test set (Table S4). Note that the partition into

training and test sets followed Hajdin et al. (2013) to mimic the way RNAlin was recently opti-

mized. For RNAlin, the set of m and b with the highest SLW-MCC value on the training set was

chosen for each replicate. Here, for the sake of illustration, we used RNAprob-3 as a representa-

tive of the RNAprob approach.

For each scenario, a paired t-test was used to compare performances between RNAlin and RNAProb-

8



3. Each test compared 10 pairs of SLW-average MCCs, a pair per each replicate. For both sce-

narios, RNAprob consistently outperformed RNAlin (Table S5). We also compared performances

on individual RNAs (70 pairs from 10 replicates for 7 test RNAs) and found that 1) for scenario

1, RNAprob outperformed RNAlin in 35 out of 70 pairs and vice versa in 20 pairs, and they per-

formed comparably in 15 pairs; 2) for scenario 2, RNAprob outperformed RNAlin in 52 out of 70

pairs and vice versa in 6 pairs, and they performed comparably in 12 pairs. Notably, in the lat-

ter case, the SLW-average MCC score, when averaged across replicates, revealed a 15% difference

in favor of RNAprob (81.06% versus 66%, Table 1), yet 6 pairs (all for RNAs shorter than 200

nt) showed higher performances with RNAlin compared to RNAprob. This volatility of perfor-

mance scores at the invidual RNA level (especially for small RNAs) reinforces the need to com-

pare schemes by SLW-averaged performances over a suffficently large test set for statistical ro-

bustness.

Statistical tests used in this study

Statistical analyses discussed in the present study were performed using several variants of con-

ventional Student’s t-tests, as implemented in the R function t.test.

Paired t-test: Scheme X vs. Scheme Y on real data. For both scheme X and Y, we have 23 data

points, corresponding to MCC scores for the 23 RNAs in our dataset. The pairing of the t-test

ensures that for an RNA, the MCC score obtained with scheme X is matched to the one obtained

with scheme Y.

One-sample t-test: Performance on real data vs. simulations for scheme X. For real data, we have

a single data point representing the SLW-average MCC, while for simulated data, we have a score

for each of n simulations. Notably, the central limit theorem states that a normally distributed

population is not a requirement given our sample size and assuming independence. Neverthe-

less, we confirmed the validity of the above statistical test by bootstrapping SLW-MCC scores for

simulations and determining where the single data point for real data fell in the resulting distri-

bution (data not shown).
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Two-sample Welch’s t-test: Scheme X vs. Scheme Y on simulated data. For both scheme X and

Y, we have a set of n data points, corresponding to SLW-average MCC scores over n simulations.

In this case, we assume unequal variance between the two sets.

In cross-validation studies and for the robustness-to-noise analysis, p-values were computed using

only one tail of the t-distribution (one-tailed test). In this case, the test assumes directionality

of the effect. For the leave-one-in analysis, a performance increase compared to the no-SHAPE

control was tested. For the leave-one-out analysis and the robustness-to-noise analysis, a per-

formance decrease compared to the performance with the entire SHAPE profile was tested. All

p-values for other t-tests were computed using both tails of the t-distribution (two-tailed test).

When multiple tests were performed for the same purpose, p-values were adjusted for multi-

ple testing using the Benjamini-Hochberg method to correct for inflated Type I errors [7]. This

method is implemented in the R function p.adjust.
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Supplementary Figures
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Figure S4: Performances of real data with added simulated noise. Five noise levels were applied
to the data, with σ2 denoting the variance previously observed in another dataset. Bars represent
SLW-average MCCs and errors bars represent the standard deviation across simulations. The
bottom dashed line indicates the performance of no-SHAPE control while scheme-specific upper
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Supplementary Tables

Table S1: Summary of RNA sequences used in this study.
RNA Length Reference of SHAPE profile

Pre-Q1 riboswitch, B. subtilis 34 [8]
Fluoride riboswitch, P. syringae 66 [8]
Adenine riboswitch, V. vulnificus 71 [8]
tRNA(asp), yeast 75 [9]
tRNA(phe), E. coli 76 [8]
TPP riboswitch, E. coli 79 [8]
SARS corona virus pseudoknot 82 [8]
cyclic-di-GMP riboswitch, V. cholerae 97 [8]
SAM I riboswitch, T. tengcongensis 118 [8]
5S rRNA, E. coli 120 [8]
M-Box riboswitch, B. subtilis 154 [8]
P546 domain, bI3 group I intron 155 [9]
Lysine riboswitch, T. maritima 174 [8]
Group I intron, Azoarcus sp. 214 [8]
Hepatitis C virus IRES domain 336 [8]
Group II intron, O. iheyensis 412 [8]
Group I Intron, T. thermophila 425 [8]
5′ domain of 23S rRNA, E. coli 511 [8]
5′domain of 16S rRNA, E. coli 530 [8]
16S rRNA, H. volcanii 1474 [10]
16S rRNA, C. difficile 1503 [10]
16S rRNA, E. coli 1542 [9]
23S rRNA, E. coli 2904 [9]
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Table S3: Quintile ranges for SHAPE reactivities
Quintile

RNA 0% 20% 40% 60% 80% 100%

Pre-Q1 riboswitch, B. subtilis -0.429 -0.130 -0.013 0.048 0.266 5.206
Fluoride riboswitch, P. syringae -0.354 -0.025 0.034 0.080 0.673 1.951
Adenine riboswitch, V. vulnificus 0 0.050 0.100 0.150 0.375 5.175
tRNA(asp), yeast 0.035 0.085 0.131 0.225 0.409 1.830
tRNA(phe), E. coli 0 0 0.010 0.020 0.137 1.607
TPP riboswitch, E. coli 0 0.032 0.053 0.075 0.177 1.548
SARS corona virus pseudoknot -2.456 -0.355 -0.046 0.210 0.602 6.426
cyclic-di-GMP riboswitch, V. cholerae 0 0 0.018 0.028 0.210 2.065
SAM I riboswitch, T. tengcongensis -0.041 0.047 0.186 0.419 0.869 3.864
5S rRNA, E. coli -0.083 0.050 0.134 0.381 0.875 3.255
M-Box riboswitch, B. subtilis 0 0.081 0.162 0.357 0.775 17.01
P546 domain, bI3 group I intron 0 0.024 0.135 0.367 0.798 3.713
Lysine riboswitch, T. maritima 0 0.078 0.195 0.351 0.857 9.045
Group I intron, Azoarcus sp. -0.145 0.070 0.163 0.393 0.847 7.471
Hepatitis C virus IRES domain -0.392 0.094 0.198 0.384 0.778 4.971
Group II intron, O. iheyensis -0.581 -0.026 0.145 0.363 0.810 3.281
Group I Intron, T. thermophila -0.934 -0.032 0.085 0.238 0.719 5.052
5′ domain of 23S rRNA, E. coli 0 0.027 0.097 0.263 0.783 3.539
5′domain of 16S rRNA, E. coli 0 0.028 0.107 0.294 0.775 5.047
16S rRNA, H. volcanii -1.449 -0.005 0.083 0.269 0.725 6.758
16S rRNA, C. difficile -1.032 0.003 0.135 0.314 0.750 4.311
16S rRNA, E. coli 0 0.030 0.104 0.278 0.633 5.000
23S rRNA, E. coli 0 0.048 0.120 0.295 0.703 7.419
All RNAs combined -2.456 0.028 0.111 0.290 0.720 17.01
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Table S4: RNA sequences in the training set and test set used in the mock probe analyses.
Training set Test set

Pre-Q1 riboswitch, B. subtilis Fluoride riboswitch, P. syringae
tRNA(asp), yeast Adenine riboswitch, V. vulnificus
TPP riboswitch, E. coli tRNA(phe), E. coli
SARS corona virus pseudoknot 5S rRNA, E. coli
cyclic-di-GMP riboswitch, V. cholerae 16S rRNA, H. volcanii
SAM I riboswitch, T. tengcongensis 16S rRNA, E. coli
M-Box riboswitch, B. subtilis 23S rRNA, E. coli
P546 domain, bI3 group I intron
Lysine riboswitch, T. maritima
Group I intron, Azoarcus sp.
Hepatitis C virus IRES domain
Group II intron, O. iheyensis
Group I Intron, T. thermophila
5′ domain of 23S rRNA, E. coli
5′domain of 16S rRNA, E. coli
16S rRNA, C. difficile

Table S5: The SLW-MCC value (%) on the test set for each of the two scenarios.
Scenario 1 Scenario 2

Replicate RNAprob-3 RNAlin RNAprob-3 RNAlin

1 78.2 78 83.2 66.6
2 80.3 72.5 82.9 66.5
3 81 76.7 80 63.8
4 80.7 76.2 81.1 70.7
5 78.5 71.1 80.6 67.3
6 78.4 72.8 79.4 67.2
7 81 75.3 80.9 63.2
8 78.7 74.4 80.4 60.8
9 79.8 72.6 81.9 66.4
10 81.4 76.1 80.2 67.5
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